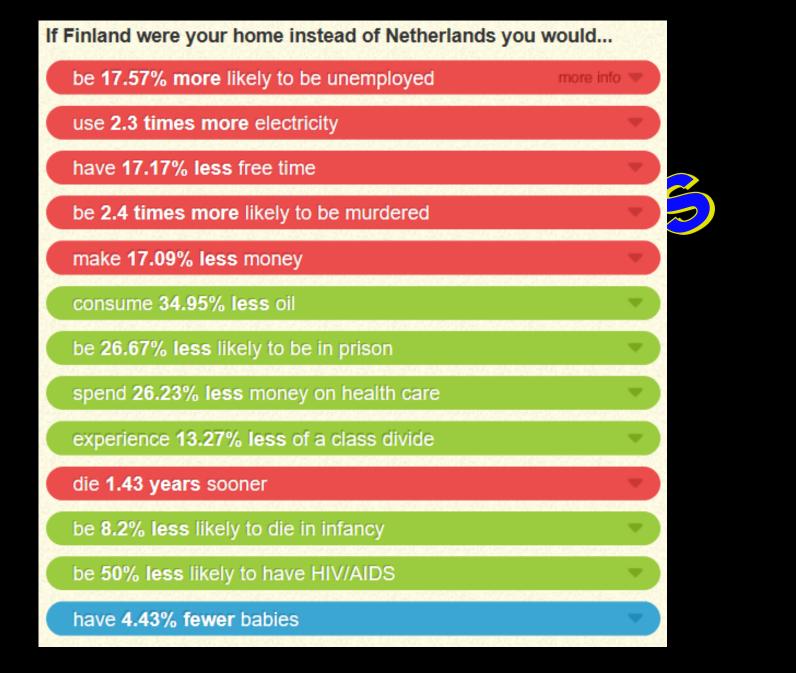
Amsterdam UMC Universitair Medische Centra

VU University Medical Center Amsterdam

VU University


Antimicrobial Stewardship in the Diabetic Foot - How to get it right

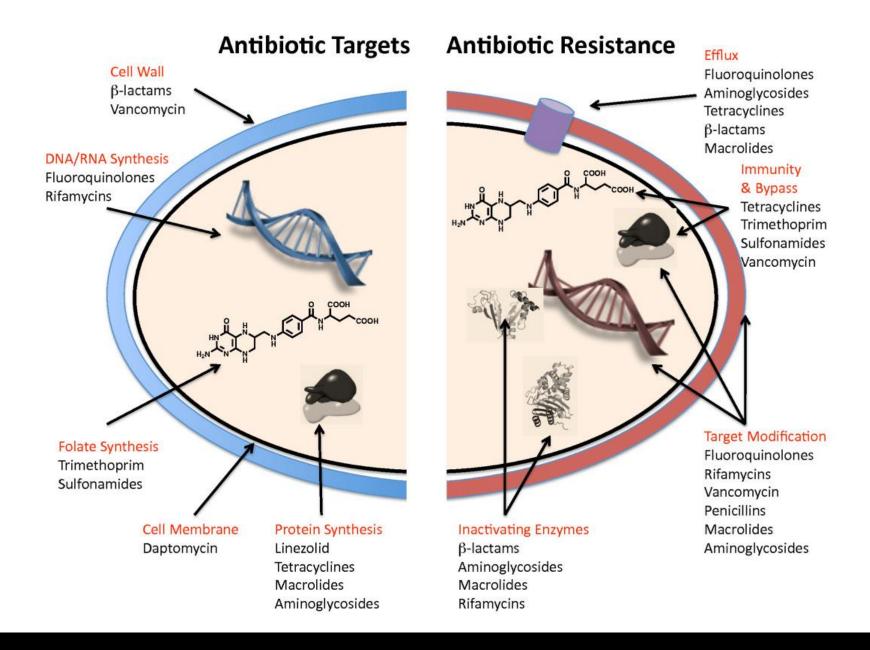
Edgar J.G. Peters, MD, PhD

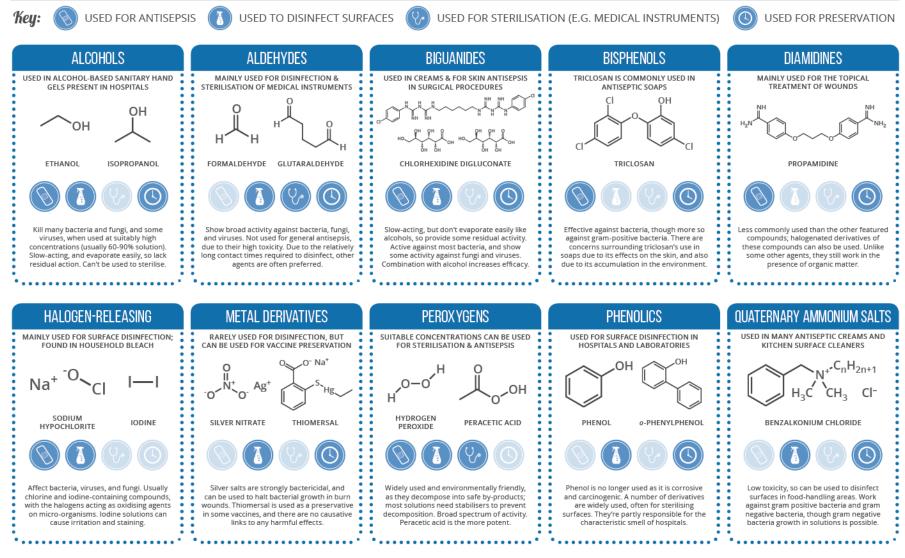
Financial disclores

- No relevant financial disclosures
- Member guideline committee diabetic foot
 - -IWGDF
 - -IDSA
 - -Dutch NIV guidelines
- Research funding:
 - -Fonds NutsOhra
 - Diabetes Fonds

www.ifitweremyhome.com

Goals and take home message


- Antimicrobial stewardship in the diabetic foot
 - -Only treat infected wounds
 - Apply proper culture techniques
 - -Only treat the pathogen
 - -Use oral antibiotics when possible
 - -Do not overuse antibiotics
 - Do not overuse antiseptics

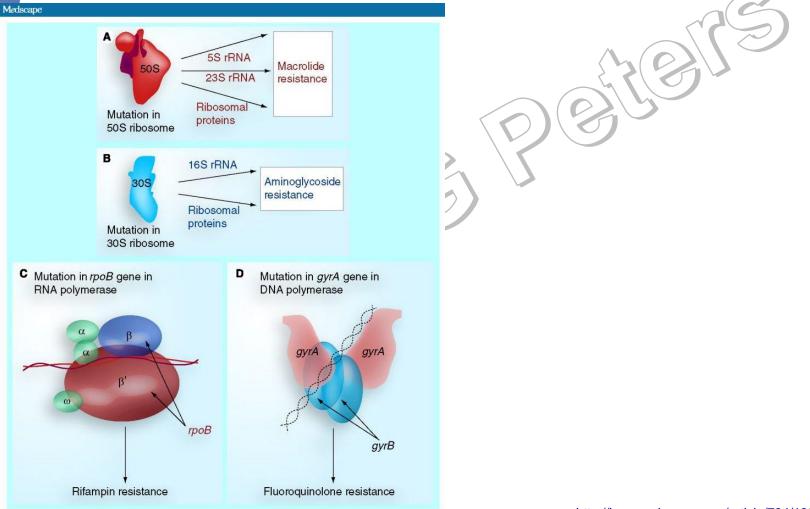

Antibiotic stewardship principles

- Use guidelines for antibiotic treatment
 - Make local antibiotic guidelines, based on national guidelines
- Take cultures before starting treatment
- Switch from empiric antibiotics to pathogen-directed therapy as soon as possible
- Switch from iv to oral therapy within 48-72 hours
- Consider the use of inflammatory biomarkers to decide continuation of therapy

EU Guidelines for the prudent use of antimicrobials in human health (European Commission, 2017) SWAB Dutch Guidelines for Antimicrobial Stewardship, 2016 Barlam *et al. Clinical Infectious Diseases* 2016;62(10):e51–e77

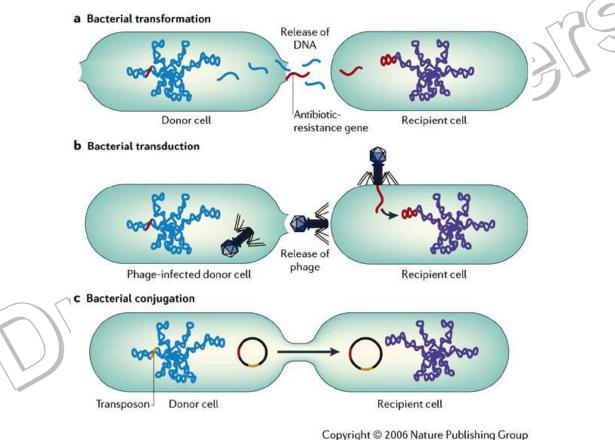
A BRIEF SUMMARY OF DISINFECTANTS & ANTISEPTICS

© COMPOUND INTEREST 2016 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives International 4.0 licence.

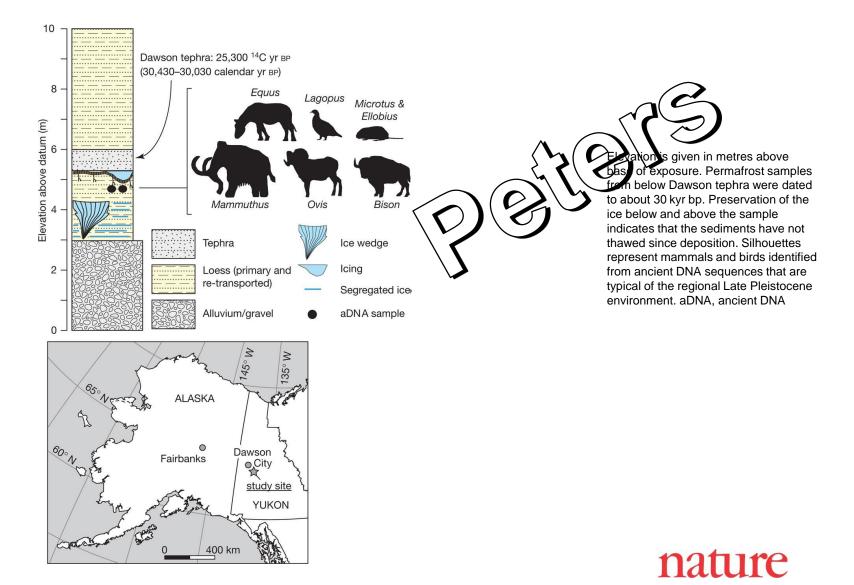

Antiseptic and antibiotic resistance

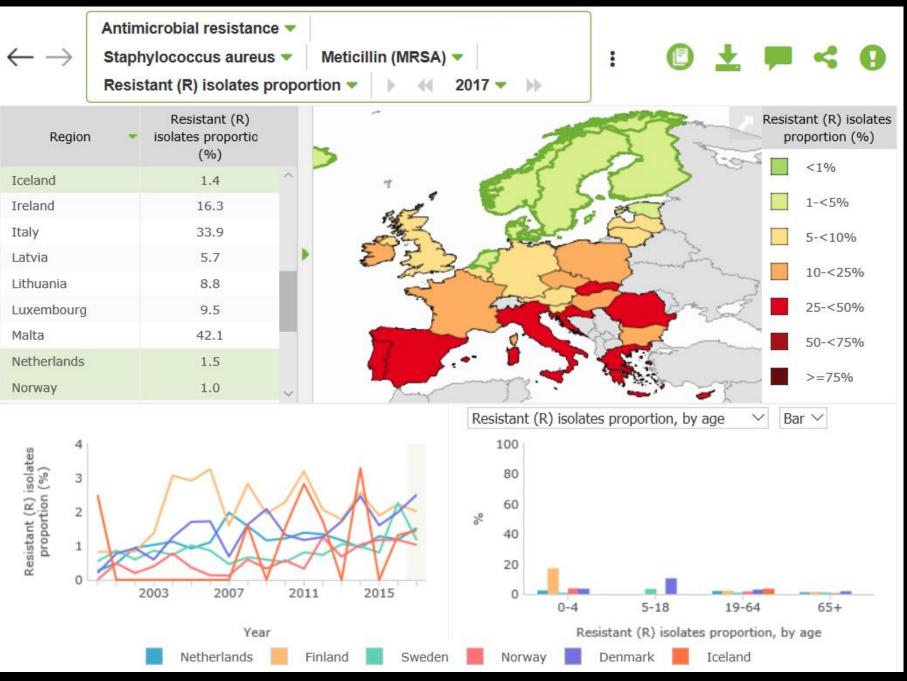
- Links between chlorohexidine tolerance and antibiotic resistance
 - -Colistin¹
 - Vancomycin²
- FDA bans antiseptic use in soap³
 - -Not effective in preventing infection
 - -Possible harm through antibacterial resistance

- 1. Wand, Antimicrob. Agents Chemother. 2016, 60, e01162-e01216
- 2. Bhardwaj, Antimicrob. Agents Chemother. 2016, 60, 2209–2221
- 3. Giuliano, Pharmacotherapy: J. Hum. Pharmacol. Drug Ther, 2015. 35, 328–33

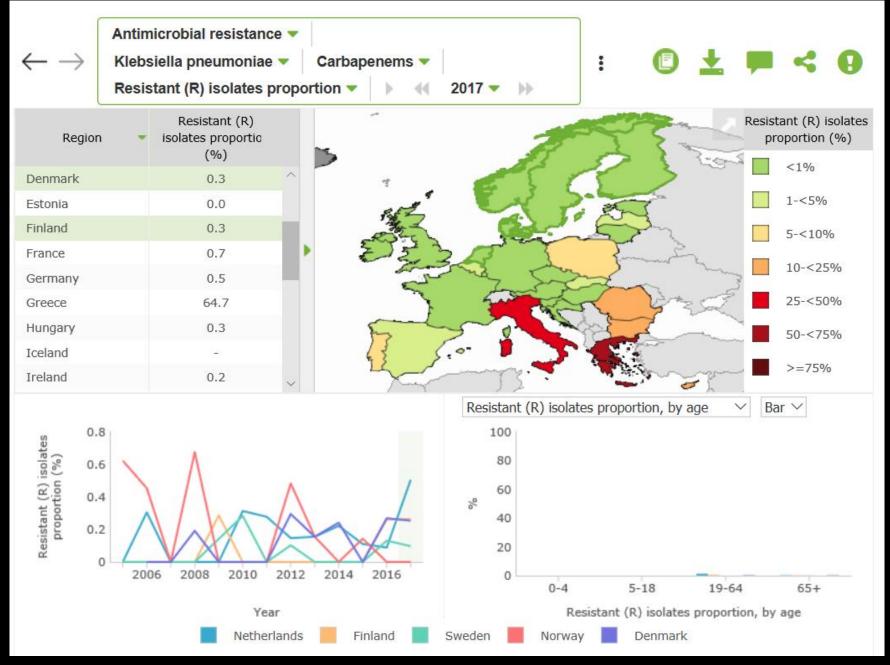


Resistance due to single mutations


Resistance due to transfer of genes


Nature Reviews | Microbiology

Resistance is ancient


Stratigraphic profile and location of Bear Creek site

VM D'Costa et al. Nature 000, 1-5 (2011) doi:10.1038/nature10388

http://ecdc.europa.eu/en/data-tools/atlas/Pages/atlas.aspx

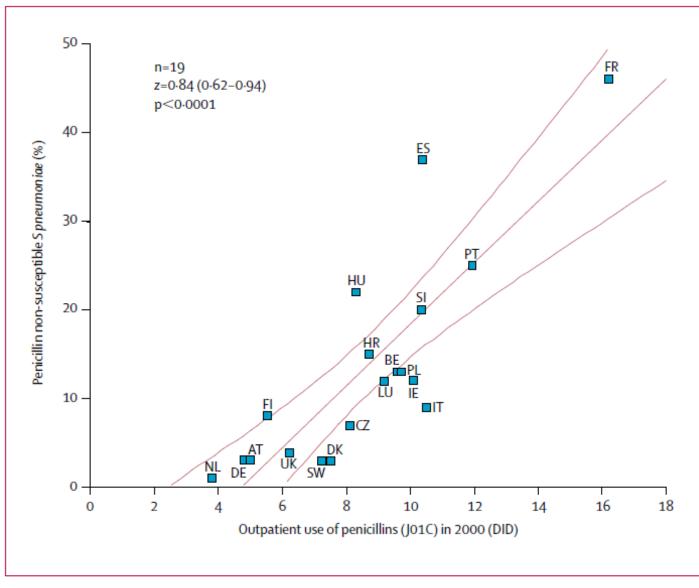
http://ecdc.europa.eu/en/data-tools/atlas/Pages/atlas.aspx

30,000 deaths per year by MDR organisms in Europe

Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis

Alessandro Cassini, Liselotte Diaz Högberg, Diamantis Plachouras, Annalisa Quattrocchi, Ana Hoxha, Gunnar Skov Simonsen, Mélanie Colomb-Cotinat, Mirjam E Kretzschmar, Brecht Devleesschauwer, Michele Cecchini, Driss Ait Ouakrim, Tiago Cravo Oliveira, Marc J Struelens, Carl Suetens, Dominique L Monnet, and the Burden of AMR Collaborative Group*

Summary


Background Infections due to antibiotic-resistant bacteria are threatening modern health care. However, estimating their incidence, complications, and attributable mortality is challenging. We aimed to estimate the burden of infections caused by antibiotic-resistant bacteria of public health concern in countries of the EU and European Economic Area (EEA) in 2015, measured in number of cases, attributable deaths, and disability-adjusted life-years (DALYs).

Lancet Infect Dis 2018

Published Online November 5, 2018 http://dx.doi.org/10.1016/ S1473-3099(18)30605-4

Figure 6: Correlation between penicillin use and prevalence of penicillin non-susceptible *S pneumoniae* AT, Austria; BE, Belgium; HR, Croatia; CZ, Czech Republic; DK, Denmark; FI, Finland; FR, France; DE, Germany; HU, Hungary; IE, Ireland; IT, Italy; LU, Luxembourg; NL, The Netherlands; PL, Poland; PT, Portugal; SI, Slovenia; ES, Spain; UK, England only.

Systematic review diabetic foot infection

- 13,365 titles reviewed
- 40 studies identified
- 15 studies to systemic antibiotics
 - -11 in osteomyelitis

Peters, Diabet Metab Res Rev, IWGDF 2016

Systematic review diabetic foot infection

- Globally no differences in outcome among antibiotic regimens/route of administration
- Used duration of antibiotics
 - -Skin soft tissue infection (SSTI) 6-28 days
 - -SSTI and osteomyelitis 6-28 days
- Clinical cure rates
 - -SSTI 48-90%
 - -SSTI and osteomyelitis 61-94%

1	Table 9. Suggested empirical antibiotic regimens, based on clinical severity, for diabetic foot infections.
	Moderate/

Route and agent(s)	Mild	Moderate/ Severe	Comments
	Oral for most	Oral or Parenteral ^{\$}	
Dicloxacillin	Yes		Requires QID dosing; inexpensive
			Usually active against community-associated MRSA, but
Clindamycin*	Yes		check macrolide sensitivity and consider ordering a "D-test"
Childaniyen	res		before using for MRSA. A protein synthesis inhibitor against
			some bacterial toxins
Cephalexin*	Yes		Requires QID dosing; inexpensive
Trimethoprim-	Yes		Active against community-associated MRSA; uncertain
sulfamethoxazole	105		activity against streptococci
Amoxicillin/ clavulanate*	Yes		Relatively broad-spectrum oral agent (including anaerobes)
Levoflexacin*	Yes	Yes	Once daily dosing; suboptimal S. aureus activity
Cefoxitin*		Yes	Cephalosporin that covers most anaerobes
Ceftriaxone		Yes	Once daily dosing
Ampicillin/ sulbactain *		Yes	Adequate if low suspicion of Pseudomonas aeruginosa
Linezolid ^a		Yes	Expensive; increased risk of toxicities when used > 2 weeks
Lillezolid			Only FDA approved oral agent for cSSSI caused by MRSA
Daptomycin* a		Yes	Once daily dosing. Requires serial monitoring of creatinine kinase
Vancomycin ^{a*}		Yes	Vancomycin MIC "creep" for MRSA may be of concern
Moxifloxacin*		Yes	Once daily oral dosing. Relatively broad-spectrum, including
WOXIIIOXaCIII			most obligate anaerobes
Ertapenem*		Yes	Once daily dosing. Relatively broad-spectrum (including
Егаренеш			anaerobes) but not active against Pseudomonas aeruginosa
			Active against MRSA. Spectrum may be excessively broad.
Tigecycline*		Yes	High rates of nausea and vomiting, increased mortality warning.
			Non-equivalent to ertapenem +/- vancomycin in 1 RCT
		Yes	TID/QID dosing-may need infusion pump for out-of-hospital use.
Piperacillin/ tazobactam*			Useful for broad-spectrum coverage, including Pseudomonas
			aeruginosa, when appropriate
Levofloxacin or		Yes	Limited evidence supporting clindamycin for severe <i>S. aureu</i> ,
ciprofloxacin with			infections; PO and IV formulations available for all 3 agents IDSA guideline
clindamycin*			
Imipenem-cilastatin *		Yes	Broad-spectrum coverage; use only when this is required 2012
			Consider when suspect ESBL-producing organism.

Do not treat clinically uninfected wounds

- Uninfected diabetic foot ulcers

 Amoxicillin/clavulanate and ceftriaxone not effective ^{1,2}
- Uninfected venous leg ulcers
 - Antibiotics not useful for heavily contaminated, clinically uninfected ulcers³

- 1. Chantelau, Diabet Med, 1996;13:156-9
- 2. Hirschl Chemotherapy 1992;38:275-80
- 3. O'Meara S, Cochrane Database Syst Rev 2014;1:CD003557

Biomarkers for follow up of DFO

Table 3 Inflammatory markers at baseline and during follow-up

	Baseline ($n = 35$)	3 weeks (n = 30)	6 weeks (n = 32)	P*	P†
CRP (mg/dl)					
DEO group, mean ± SD	10.08 ± 8.62	0.46 ± 0.34	0.9 ± 1.02	0.0002	0.021
NDFO group, mean ± SD ESR (mm/hours)	5.44 ± 7.88	1.23±1.58	0.92 ± 0.94	0.096	
DEO group, mean ± SD	78-33±35-93	47-48±33-18	45.23 ± 28.83	<0.0001	0.017
NDFO group mean ± SD PCT (ng/ml)	58·9±40·25	61-38±44-31	55.5±40.83	0.375	
DEO greup, mean ± SD	0.26 ± 0.45	0.06 ± 0.06	0.06 ± 0.06	0.048	0.179
NDFO group, mean ± SD IL-6 (pg/ml)	0.07 ± 0.07	0.06 ± 0.04	0.05±0.03	0.292	
DEO greup, mean ± SD	14.54 ± 12.98	6.23 ± 9.36	4.35 ± 5.21	0.004	0.755
NDFO group, mean \pm SD	20.91 ± 21.27	5.98 ± 7.02	8·13 ± 9·5	0.099	
IL-8 (pg/ml)					
DFO group, mean ± SD	10.15 ± 4.64	52.57 ± 201.78	15.78 ± 29.18	0.347	0.526
NDFO group, mean ± SD MCP-1 (pg/ml)	9·16±4·42	8.53±4.71	9·34±3·68	0.525	
DFO group, mean ± SD	45.89 ± 27.19	52.39 ± 27.71	63.40 ± 26.22	0.002	0.092
NDFO group, mean ± SD	50.28 ± 22.49	41.10 ± 26.04	78.48 ± 70.63	0.078	

Association with outcome??

Van Asten, Int Wound J, 2015

Antibiotics: how and how long?

Table 4. IDSA recommendations for antibiotic route and duration [9].

Site, by severity or extent, of infection	Route of administration	Duration of therapy	
Soft-tissue only			
Mild		1 – 2 weeks; may extend up to 4 weeks if slow to resolve	
Moderate	Oral (or initial parenteral)	2 – 4 weeks	
Severe	Initial parenteral, switch to oral when possible	2 – 4 weeks	
Bone or joint			
No residual infected tissue (e.g., post-amputation)	Parenteral or oral	2 – 5 days	
Residual infected soft tissue, but not bone	Parenteral or oral	2 – 4 weeks	
Residual infected but viable bone	Initial parenteral, then consider oral switch	4 – 6 weeks	
No surgery, or residual dead bone postoperatively	Initial parenteral, then consider oral switch	>3 months	

Lipsky, *Clin Infect Dis, 2012* Lipsky, *Diab Metab Res Rev,* 2016

Wound swabs

- Easier to perform
- Non-invasive
- Identifying anaerobes (and gramnegatives)??

Lipsky, Diabet Metab Res Rev, 2016

Tissue samples

- More time-consuming
- Risk of injury to surrounding tissues
- Safe in large cohorts
- More accurate microbiological diagnosis of DFI

Table 3. Proportion of pathogens isolated from cultures of bone biopsy and/or swabsamples obtained from 69 patients with diabetes with suspected foot osteomyelitis.

	No	of instances in the specif			
Pathogen	Total	Erom bone biopsy sample only	From swab sample only	From both bone biopsy and swab samples	Concordance, ^a %
Staphylococcus aureus	49	13	15	21	42.8
CNS	35	30	4	1	2.8
Streptococci ^b	31	11	12	8	25.8
Enterococci	15	9	5	1	6.67
Corynebacteria	10	2	8	0	0
Gram-negative bacilli	42	12	18	12	28.5
Anaerobes	9	6	3	0	0
Total	191	79	65	43	22.5

Senneville, 2006, Clin Infect Dis

Outcome of diabetic foot osteomyelitis

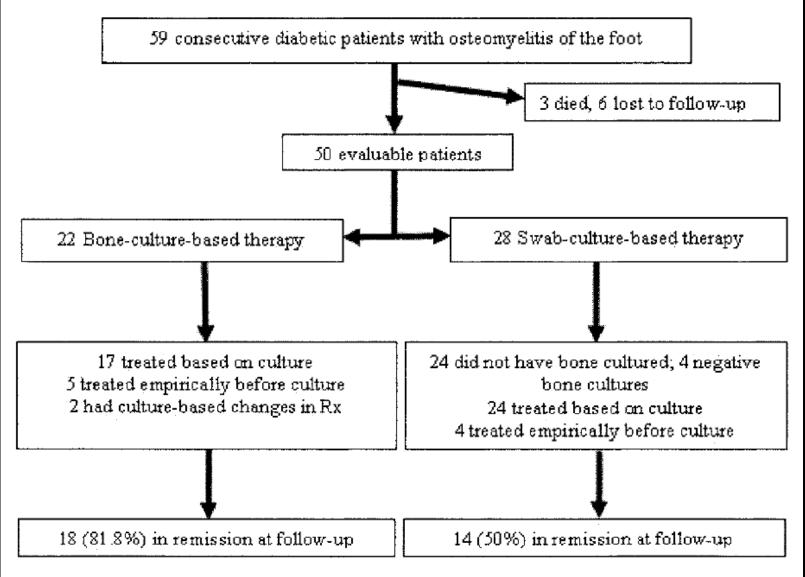


Figure 1—Summarized data for patients' outcome.

Treatment: myths

Do not:

- Treat uninfected ulcers to promote healing
- Treat infected ulcers until the ulcer is healed
- Treat all the organisms isolated from the microbiological specimens
- Hospitalise all infections
- Give lots of intravenous therapy

Take home message

- Antimicrobial stewardship in the diabetic foot
 - -Only treat infected wounds
 - Apply proper culture techniques
 - -Only treat the pathogen
 - -Use oral antibiotics when possible
 - Do not overuse antibiotics
 - Do not overuse antiseptics

22 - 25 MAY 2019 World Forum - The Hague - The Netherlands

STAY IN TOUCH!_

www.diabeticfoot.nl

